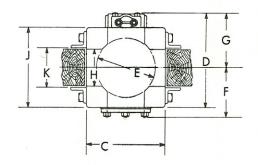

SPECIFICATIONS AND APPLICATIONS

HAMMER SIZE No.	1	2	3	5	6	7
Weight of ram, lbs.	21	48	68	200	400	800
Rated striking energy per blow, ft. lbs.				1000	2500	4150
Rated speed, blows per minute, normal	500	500	400	300	275	225
Boiler horsepower required,	15	15	25	35	45	65
Compressed air required, actual cubic feet at hammer ₂	70	70	110	250	400	450
Steam or air pressure required at hammer;	100	100	100	100	100	100
Min. size hose openings and connections from boiler/comp. to hammer, inches	3/4	3/4	1	11/4	11/4	11/2
Bore, inches	21/4	4	31/4	7	93/4	121/2
Stroke, inches	3¾	41/4	53/4	7	83/4	91/2
Net weight with flat or bell (cup) anvil, hammer only, lbs.	145	343	675	1500	2900	5000
Shipping weight, hammer and fittings, lbs.	185	380	735	1560	2970	5075

P. H. No.		DIMENSIONS IN INCHES												
	Α	В	C	D	E	F	G	Н	J	K				
1	42%	391/4	81/2	63/42		21/2	41/42	21/4 & 31/4	41/2					
2	32¾	29	81/4	91/4	43%	3%	57/8	3	65/8	31/4				
3	573/4	52%	9	101/82		31/6	7	35/8	91/4					
5	57	50%	11	14%	6	51/2	9%	41/4	11	6				
6	631/8	54%	15	191/8	111/4	71/2	11%	7	15	61/2				
7	721/2	63	21	23%	16	8%	14%	7* 11†	16	61/2				

NOTES:


- 1. Boiler horsepower is given in ASME rating.
- Since the volume and pressure
 of compressed air delivered to a
 hammer will vary with compressor
 condition, weather, length and
 condition of the air line, and other
 varying factors, air consumption is
 given in this manner. Generally, to
 assure satisfactory hammer operation, your compressor should be
 able to deliver 150% of this actual
 compressed air volume.
- 3. Steam or air pressure is given at the hammer in pounds per square inch. Pressures required at the boiler or air compressor will vary with weather, installation of the boiler, length and type of steam or air line used. Steam pressure must be regulated at the prime mover to run the hammer to speed.
- 2 Does Not Include Step
- * Front To Back
- † Side To Side

APPLICATION GUIDE FOR FLUID-VALVE HAMMERS

Hammer Model	1	2	3	5	6	7
Typical Site Conditions —	Common soil such as sand, loose gravel, silt & loam. Low head-room. Light holding devices.					
Typical max. Pile-Bearing Load — tons	_		_	5	12	20
Timber pile — Normal max. diameter, inches Typical penetration, feet	_	_		4 10-15	6 15-20	10 20-25
Pipe pile — Normal max. diameter, inches OD Typical penetration, closed-end, feet		3 5-10	_	4 15-20	6 15-20	10 20-25
H-beam — Normal max. size, inches Typical penetration, feet	B10L 2-3	B10L 3-4	B12L 4-5	BS4 10-15	B6 15-20	BP-8 20-25
Wood sheet — Normal max. size, inches Typical penetration, feet	3x10 4-6	3x8 6-10	3x12 6-10	4x12 10-15	6x12* 10-15*	10x14* 15-20*
Steel sheet — Normal max. depth, inches Typical penetration, feet	1% 5-10	13⁄8 10-15	1% 10-15	3½ 15-20	5 20-30	3½* 20-30*

^{*} Driving 2 sheets at a time.

RPI Equipment, LLC 26 W Main Street Mount Ephraim, NJ 08059

rpiequipment.com (856) 456-0081 • office (856) 742-1994 • fax

SPECIAL DRIVING ADAPTERS

All sizes of McKiernan-Terry double-acting fluid-valve hammers have been adapted to a wide variety of operations requiring a continuous impact blow. McKiernan-Terry hammers such as those described in this brochure have been successfully adapted for such applications as knocking skulls and lip skulls out of ladles in blast furnaces, knocking ingots out of molds in steel mills, tapping and opening cast holes in blast furnaces, driving keys on sow and die blocks in large forging hammers, driving metal culverts horizontally in retaining walls, and "cleaning" huge locomotive tender frame castings by impact-produced vibration, to name a few.

McKiernan-Terry engineers welcome inquiries concerning special applications of their equipment. When inquiring about special purpose modifications, please submit dimensional sketches of application.